
Error Management and
Debugging in Pan 11

Michael L. Van De Vanter

Computer Science Division

Department of Electrical Engineering and Computer Science

University of California

Berkeley, California 94 720

Report No. UCB/CSD 89/554

A PIPER Working Paper

December 1989

Abstract

Pan is a complex, interactive system that is both under constant

development and designed to be user-extensible. Under these circum­

stances it is important to have a clear policy for detecting and man­

aging system errors (as opposed to errors in programs being edited),

mechanisms to support the policy, and guidelines for their use.

This document describes our goals for error management in Pan,

from the various perspectives of casual user, author of extension code,

and author of Pan system code. It discusses briefly the current imple­

mentation (Pan I version 3.0), how we arrived at it, and some of its

problems. Finally, it proposes a set of guidelines for future work on

Pan.

1 SponsoreJ by the Defense Advanced Research Projects Agency (DoD), monitored by

Space and Naval Warfare Systems Command under Contract N00039-88-C-0292, and by

a gift from Apple Computer Corp.

I
J

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
Error Management and Debugging in Pan I

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Pan is a complex, interactive system that is both under constant development and designed to be
user-extensible. Under these circumstances it is important to have a clear policy for detecting and
managing system errors (as opposed to errors in programs being edited), mechanisms to support the
policy, and guidelines for their use. This document describes our goals for error management in Pan, from
the various perspectives of casual user, author of extension code, and author of Pan system code. It
discusses briefly the current implementation (Pan 1 version 3.0), how we arrived at it, and some of its
problems. Finally, it proposes a set of guidelines for future work on Pan.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

44

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Contents

1 Introduction
Roles ...
Overview
Typographic Conventions

2 Goals
2.1 The User's Perspective .

User Errors

Internal Errors
Managing User Errors .

Managing Internal Errors

2.2 The Extender's Perspective

2.3 The Implementor's Perspective

3 Implementation Issues
3.1 Debugging vs. Production Versions .

3.2 Error Handling Primitives . .

Editor-Error and Editor-Warn
Definitional Facilities .

Con~x~

Implementation

3.3 Resetting the Command Dispatcher

Errors Under Program Control

Breaks To Lisp
Dealing With Unwinds

Unwinds in Other Situations

3.4 Detecting User Errors
Prompting

Protective Wrappers .

Functions for Testing .

Abstraction Layers and Responsibility

3.5 Protecting Pan Internals

Permanent Tests for Internal Errors .

Debugging Assertions in CoMMON LISP

Debugging Assertions in "C" .

3.6 Catching Lisp Errors Globally .

Trapping Lisp Errors

1
1
2
2

2

2
3
3
3
5

5
6

6
6
7
7
8
9

11
11
11
11
12
12
13
13
14
14
14
16
16
17
18
18
18

COMMON LISP Error Detection ..

Foreign-Function Error Detection .

3.7 Trapping Anticipated Lisp Errors .

3.8 Tracing

Allegro Function Tracing
Allegro Function Advising

Custom Tracing in COMMON LISP

Custom Tracing in "C"

3.9 Statistics

Allegro Statistics

Custom Statistics in COMMON LISP

4 Guidelines for Extension Programming

Debugging Version
Responding to User Errors . .
Prompt Arguments
Error Detection in Primitives

Protective Wrappers
More Help

5 Guidelines for Internal Programming

5.1 User Errors .

5.2
5.3

5.4

5.5

Implicit Tests
Explicit Tests
Internal Documentation
User-Lisp Errors
Protect Against Unwinds
Assertions
Assertions in COMMON LISP

Assertions in "C"

Tracing
CoMMON LISP Function Tracing

Allegro Function Advising
Custom Tracing in COMMON LISP

Custom Tracing in "C"

S ta tis tics

Custom Statistics in COMMON LISP

6 Acknowledgements

11

19
19
19
20
20
20
20
21
22
22
22

23
23
23
24
25
26
27

27
27
27
28
28
29
30
31
31
32
33
33
33
33
34
35
35

36

1 References 36

lll

1 Introduction

Policies and facilities for detecting, diagnosing, and recovering from internal

errors are a crucial part of any complex software system. The need is espe­

cially great in Pan because it is interactive, under constant development as

a research testbed, and designed to be user-extensible [3]2.

For the purpose of this document, an error is an internal state in Pan

in which continued execution would lead to an untenable or unacceptable

state. 3 An error under this sense is somewhat analogous to, but different

from, a Lisp error as defined by the underlying language CoMMON LISP

(although the two definitions overlap) [8]. In this document, error will

mean Pan error unless otherwise noted.

Roles

This discussion approaches error management from three points of view,

corresponding to roles a person might fill when dealing with Pan.

• A user has work to do and just wants Pan to help.

• An extender writes additional, special-purpose commands for· Pan,

without necessarily being knowledgeable about or interested in the

deeper aspects of Pan's internal workings. It remains a goal of the

projectto support this kind of extension-level programming (although

the Pan extension language has yet to be fully developed and docu­

mented).

• Finally, an implementor builds, debugs, and maintains the system at

all levels.

Members of the project may fill more than one role, sometimes all three

at once. It is important, however, to consider the needs of the three different

roles separately. All three roles are important to the success of the project,

but their needs and responsibilities vary.

2This is a working document that has evolved through several drafts as the issues

came under discussion. Some of those issues remain partially open and are noted as such.

Comments and additions should be kept for possible future revisions.
3This kind of error has nothing to do with mechanisms in Pan for editing and browsing

ill-formed programs.

1

• E

Overview

The paper begins by articulating goals for error management and debugging

in Pan, viewed from the three perspectives. It continues with a discussion of

implementation, historical, present, and proposed. Finally, it suggests a set

of guidelines to be used in future Pan development, both at the extension

and implementation level.

Typographic Conventions

Pan runs as a COMMON LISP image in which Pan objects are defined in

and coexist with CoMMON LISP. Parts of Pan depend on a substrate im­

plemented in "C", imported into COMMON LISP by the Allegro "foreign­

function interface."
This paper follows typographic conventions used in the Pan user manual

[2]. CoMMON LISP objects named in the text appear in typewriter font (as

in cons), as do blocks of lisp code. Pan objects (the commands, functions,

macros, options, and variables that constitute the extension language) ap­

pear in sans-serif (as in Editor-Error) when named in the text, but will appear

in blocks of COMMON LISP code like any other code. Note, however, that

names of Pan objects are by convention capitalized to distinguish them from

Pan internal functions and CoMMON LISP functions.

"C" code and objects also appear in typewriter font. "C" functions im­

ported into COMMON LISP are known in CoMMON LISP by different names;

naming conventions make the distinction clear. For eXample the "C" func­

tion swOpClearWindow is imported into COMMON LISP as sw-clear-window.

Two special marginal notes appear throughout the discussion of imple­

mentation issues (see examples at right). These notes identify special prob­

lem areas (where projected solutions are not yet clear) and unifinished areas

(where additional functionality is anticipated but not complete).

2 Goals

This section describes what we hope accomplish with error management in

Pan. These goals vary, depending on which of three points of view we take.

2.1 The User's Perspective

A user would prefer not to bother with any of this. For this person, two kinds

of errors can intrude while running Pan: user errors and internal errors.

2

Problem
Unfinished

User Errors

A user error occurs when Pan has been instructed to do something that

is unsafe, incorrect, or doesn't make sense. Examples include attempting

to move the cursor past the end of a buffer, to edit a file specified with

a malformed or nonexistent directory path, and to paste from an empty

clipboard.
It is tempting to assume that a conscientious user given adequate docu­

mentation will commit no user errors. In fact every user will commit many.

Some user errors are inadvertent, some result from trial and error learning

[5], and some take deliberate advantage of the error mechanisms ("move the

cursor forward until it stops").

A special kind of user error is the configuration error. Users may write

files containing Pan commands that, when loaded, set options, bind key­

board sequences to commands, create ~enus, and the like. The user can

load configuration files explicitly (using Load-File), implicitly at start-up

time by naming a file . panrc, or implicitly when visiting files in new buffers

(using Auto-Load). In the COMMON LISP implementation of Pan, configu­

ration errors can manifest themselves in different ways (definitional errors,

macroexpansion errors, loading errors), but they are conceptually the same

to a user.

Internal Errors

In contrast, an internal error arises when Pan, in course of meeting a legit­

imate command from the user, arrives at a state where it cannot continue.

From the user's perspective, Pan is simply broken, and it is somebody else's

fault.
The boundary between the two classes of errors is blurry in practice,

but it is important to respect this very important distinction in the mind of

Pan's users. Pan's usability depends on handling user errors gracefully and

constructively; it is also greatly enhanced by a scarcity of internal errors.

Managing User Errors

The guiding philosophy here is that the management of user errors is not

only self-defense for system internals, but is also Pan's primary help system.

Think of the input not as an error, but as the user's first iteration

toward the goal. [7]

3

I
-~

The best response to user errors is good functional and user-interface

design. There are two general approaches.

The best solution is a design that does not allow errors to occur in the

first place. For example, Pan's directory editor now makes it possible to

select a file to visit by pointing, giving immediate feedback about which file

was selected. With this interface, it is impossible to commit mis-specification

errors for files (of which there are many kinds).~ another example, Pan's

scroll bars make it possible to scroll to absolute (if imprecise) buffer locations

by using the middle mouse button; it is impossible with this interface to

specify a location that does not exist.

A closely related solution is to design the system so that it responds,

not with a special kind of behavior, but in some simple and obvious way.

For example, any attempt to scroll past the end of a buffer is clearly a user

error, but the customary response is for the viewer to refuse (silently) to

scroll further. Two aspects of the viewer display make this non-response

adequate: the scroll bar bubble shows that the end of the buffer is visible,

and the special display of empty lines past the buffer's end reinforces this

fact.
However, a system as complex as Pan will always be vulnerable to user

errors that demand extraordinary responses. These responses should follow

the following guidelines, in decreasing order of importance.

• Recover. Retain the benefit of any work the user accomplished before

issuing the offending command.

• Reset. Return quickly (and obviously) to a safe state, allowing the

user to issue further commands with no unpleasant after-effects.

• Educate. Present the user with enough information to determine the

nature of the error and, if possible, to avoid it in the future.

• Be Nice. Be as unobtrusive and polite as is permitted by the above

goals.

In the special case of user configuration errors (see earlier discussion), the

guidelines are essentially the same. There should be informative warnings,

explaining the nature of the problem and what action was taken (ignored,

default assumed, or whatever). Furthermore, other configuration statements

in the fLe, both before and after, should be handled normally if they cause

no errors.

4

• I

Managing Internal Errors

For a user, encountering an internal error is like going to the dentist. It

shouldn't happen at all, but when it does one hopes that the experience will

be as productive and painless as possible. This suggests the following, again

in decreasing order of importance.

• Recover. Retain the benefit of any work the user accomplished before

issuing the ill-fated command.

• Educate. Make clear to the user that the error is internal; explain

the cause so the user can avoid the error until it is corrected. Present

enough information to help an implementor (not necessarily the user)

diagnose and ultimately correct the cause.

• Reset. The user should be able to reset Pan, when desired, to a safe

state, with as few unpleasant after-effects as possible.

All of this assumes, of course, that Pan's documentation informs the user

sufficiently about error handling and recovery.

2.2 The Extender's Perspective

Extension level commands are, from the user's perspective, just more Pan;

they should re~pond to errors no differently than built-in commands. Thus,

the extension language must assist and encourage the extender to follow the

same guidelines and to write code that responds to errors as consistently as

possible. This involves the following support.

• Toolkit. Commands and functions in the extension language should

detect standard user errors, for example ensuring the validity of file

specifications entered by the user. It should be possible for simple

extension commands to rely solely on built-in mechanisms for error

detection, notification, and recovery.

• Responsibility. The extender should be made aware of the division

of responsibility for detecting user errors: which errors the extension

language primitives will detect and which must be detected explicitly

in extension code.

• Protection. Primitives of the extension language should help protect

Pan's internals against corruption through misuse by extension code.

5

When necessary for efficiency, this protection can be made optional,

operating only during debugging.

2.3 The Implementor's Perspective

Goals for the implementor are somewhat the same as those for the extender,

but with additional responsibility to make life as easy as possible for the

extender. Additional goals include the following.

• Consistency. Internal error management should be standardized to the

point of routine. This includes Pan's behavior, as seen by users and

extenders, as well as the code that will be read by other implementors.

• Tools. Whenever possible, standard tools should support internal error

management. These are not necessarily the same tools as those used

by extenders. For example they should include built-in tracing and

error detection code.

• User Interface. Special user interface for implementors should enable

dynamic control of Pan's debugging and tracing facilities at a rel.atively

fine granularity.

3 Implementation Issues

This section presents some of the technical issues involved with error man­

agement and debugging in Pan. It discusses some special problems along

with existing solutions, unresolved difficulties (flagged by a special marginal

note, see example at right), and unfinished work (also flagged by a special

marginal note, see example at right).

This section does not discuss specific guidelines for programming in Pan;

those appear in the following two sections.

3.1 Debugging vs. Production Versions

Configuration switches allow us to build versions of Pan that embody dif­

ferent choices in the tradeoff between safety and speed. We usually install

a production version in the public binary file; for optimal performance, this

version performs the minimum permissible degree of error checking (still a

substantial amount). For development work we Keep a debugging version in

which switches are set the other way.

6

Problem
Unfinished

Configuration switches exist for the following choices (most of which are

discussed in more detail throughout this section).

• Compile all CoMMON LISP code with minimum regard for speed and

maximum regard for internal error detection (vs. the opposite choices).

• Make load-time requests that improve error detection in the foreign­

function interface at the expense of speed.

• Include with compiled COMMON LISP code all Pan debug-assert

forms for internal error detection. When included, a separate switch

for each module dynamically controls evaluation of the forms.

• Include with compiled "C" code all Pan tests for internal errors.

• Include with compiled COMMON LISP code all Pan debug-trace forms

for custom tracing. When included, a separate switch for each defined

trace controls trace output dynamically.

• Include with compiled "C" code Pan tracing statements for reporting

on the foreign function interface. When included, a separate switch

for each "C" module controls "C" tracing dynamically.

In the rest of this section, any error detection mentioned without explicit

qualification is performed in every version of Pan, independent of these

configuration switches.

3.2 Error Handling Primitives

This section introduces Pan's two primitive functions for handling errors

that can be detected under program control. Although this document em­

phasizes the management of errors detected at ron time, while a user is

running Pan to get work done, there are special problems associated with

error management in other contexts. These primitives address some of these

problems by combining a uniform client interface with context-sensitive be­

havior.

Editor-Error and Editor-Warn

Editor-Error and Editor-Warn, as their names suggest, are modeled on CoM­

MON LISP error and varn respectively. 4 These two primitives are designed

•m some contexts Editor-Error and Editor-Warn behave identically to their COMMON

LISP counterparts. ·

7

to be used uniformly for error reporting throughout Pan; their behavior

changes dynamically to suit different contexts (more on contexts below).

In Pan terminology Editor-Error signals a fatal error, like its CoMMON

LISP counterpart. When the documentation for a Pan function or command

mentions that "an error is signaled," it is understood that this happens with

a call to Editor-Error. Also like COMMON LISP error, Editor-Error never

returns to its caller.
Editor-Warn embodies the same error reporting strategy as Editor-Error in

every context but allows execution to continue, in the manner of CoMMON

LISP warn.

Note that the primitive Announce is closely related to Editor-Error and

Editor-Warn. Its behavior changes dynamically, with a reporting strategy

that follows the other two in every context. Announce, however, is intended

for informational messages, not error reporting, so it will not be mentioned

further here.

Definitional Facilities

Elaborate mechanisms support the definition of Pan objects, the commands,

functions, macros, options, and variables that constitute the extension lan­

guage. Unfortunately, the flexibility of the CoMMON LISP model for inter­

preting, compiling, and loading code, while generally advantageous, presents

special problems for handling errors detected by these facilities.

For example implementors use these facilities to create basic objects in

Pan's infrastructure. These definitions are compiled and loaded into Pan

binaries, with the effect that basic objects are predefined and immediately

available for use at run time. But a naive user might invoke the same

definitional facilities in a configuration file that gets auto-loaded during a

session with Pan. An error detected here is more appropriately handled

like a run-time user error, with suitable warnings, defaults, recovery, and

resetting of the command dispatcher.

Separate definitional mechanisms [4] [1] produce the language descrip­

tions that drive the language-based components of Pan. Unlike Pan object

creation, these mechanisms benefit from off-line preprocessing. Like Pan

object creation they may be either preloaded into Pan binaries or loaded at

run time, with the possibility of error in either context.

Pan's definitional mechanisms will eventually handle errors uniformly

with calls to Editor-Error and Editor-Warn, relying on the behavior of the

primitives to respond appropriately in the current context.

8

Contexts

Although most of the discussion in this paper emphasizes run-time issues, we

have identified four different contexts whose requirements for error handling

are distinct. Note that this discussion glosses over some subtle implementa­

tion issues in COMMON LISP (compiling vs. loading vs. macroexpansion vs.

evaluation); these distinctions are important to the correct implementation

of Pan's error handling primitives, but not to this discussion of requirements.

Run Time. This is the context most at issue in this paper; it motivated the

earlier discussion of goals for error management. Pan is event-driven,

so the run-time context can be viewed as a series of computations, each

initiated by Pan's dispatcher in response to an event (a user action). 5

A call to Editor-Error in this context terminates the processing initiated

by the most recent event (see the next section on unwinding for more

discussion of how this happens) and resets the dispatcher to await the

next event. The error report in this context is typically a short message

appearing in the annunciator of the active viewer, accompanied by a

beep or canvas flash. A call to Editor-Warn reports the same way, but

allows the computation to continue.

Some care is taken in Pan to ensure that any event-initiated computa- Problem

tions can be terminated gracefully, but the actual thread of control is a

bit more complex and its error recovery requirements less well-defined

than the simp!~ model presented above. Once the dispatcher has trans-

lated an event into a request for a specific command, it executes the

following sequence of functions:

1. Zero or more functions that have been registered with a special

before hook for command dispatch.

2. An optional before daemon that may be defined for the specified

command.

3. The specified command.

4. An optional after daemon that may be defined for the specified

command.

sThis model is confounded slightly by the existence of timer events. These do not

originate directly from user events, but rather rr·om elapsed time since the most recent

. user event. This discussion ignores the distinction becauses (a) Pan's dispatcher manages

these much the same way as user events, and (b) only very specific, low-level functions

are performed in response to timer events.

9

5. Zero or more functions that have been registered with a special

after hook for command dispatch.

The command dispatcher in the current implementation terminates

the entire sequence in response to any call, anywhere in the sequence,

to Editor-Error. It isn't clear, however, that this is the most desirable

behavior.

Build Time. Some of Pan's mechanisms (especially the definitional facil­

ities) execute during the compilation, loading, and dumping that it

takes to produce Pan binaries. In this context, the reporting and re­

covery behavior needed at run time is inappropriate, so Editor-Error

and Editor-Warn behave essentially like error and warn respectively.

A call to error reports the error message to standard output and

drops into a Lisp break; warn reports the same way and continues.

Run-time Loading. There are normal situations in which Pan code is Unfinished

loaded into a running Pan. At present, the error handling context is

simply inherited from the standard run-time context, but this is inade-

quate. The first error encountered in the file causes termination of the

load, whereas it would be more convenient for the user/developer to

have the definitional mechanisms attempt to continue after failing on

a single form. Furthermore, the annunciator is inadequate for display-

ing the kinds of messages that can be generated. The error handling

primitives should exhibit special behavior in this context, continuing

loading as much as possible and recording error messages in a log of

some sort.

In contrast, run-time loading of language descriptions is now carried

out in a special error handling context that is specialized for this pur­

pose.

Batch Execution. Pan can execute certain functions in a batch mode,

where ordinary run-time code executes without the window system

and without user interaction. In this context, Editor-Error reports to

standard output and terminates the COMMON LISP computation en­

tirely via excl: exit. It also returns an error code to the shell so that

encompassing makefiles can detect the failure.

10

Implementation

The primitive functions Editor-Error and Editor-Warn are implemented as

indirect calls to functions bound to special variables. 6 Bound by default

to error and warn respectively, these variables are dynamically rebound in

contexts other than build time. This mechanism permits easy extension;

new error handlers for new contexts can be bound dynamically as needed.

3.3 Resetting the Command Dispatcher

As described in the discussion of error contexts, Pan responds synchronously

at run time to user events (keystrokes, mouse button clicks, menu selections,

and the like) via an internal command dispatcher. In response to some

events the dispatcher invokes a Pan command, waits for it to complete, and

then awaits the next event. This discussion considers only errors that take

place during command execution (see the earlier discussion of the run-time

context for an explanation of those that don't).

When Pan code detects a user error at run time, it should terminate

execution of the current command, report to the user, and reset the dis­

patcher to await the next event. Writing explicit control threads to support

this behavior would be enormously complex. In Pan commands may call

other commands, macros, and functions; errors can be detected at different

levels of nested function calls.

Errors Under Program Control

Pan simplifies the thread of control by exploiting the COMMON LISP throw

mechanism. A run-time call to Editor-Error does not return. It prints a

specified error message, beeps (or flashes the canvas), and unwinds the call

stack with a distinguished throw. The dispatcher has the corresponding

catch, 1 and resets appropriately.

Breaks To Lisp

Unfortunately not all Lisp errors can be detected and managed explicitly

by Pan code (more about this later); every user will eventually fall into a

6 Announce, mentioned earlier, is implemented the same way .
7 The dispatcher actually uses the macro Execute-Protect, which contains the cor­

responding eateh. Thus the same protection is available in contexts other than t!le

dispatcher.

11

I
. I

CoMMON LISP "break loop." This allows an implementor to diagnose the

problem by viewing the call stack on top of the dispatcher.

The user can reset the dispatcher from a break loop by typing :resume,

presumably in the shell where the Pan process originated; this translates

into a call to Editor-Error. In extreme failures, when Pan fails to reset,

:panic typed to the break loop results in an attempt to save files from all

modified buffers.

Dealing With Unwinds

Since error detection in Pan is distributed, programs must be ready for

any Pan function to unwind instead of returning normally. In particular,

no unpleasant side-effects (like open scratch files) should remain after an

unwind.
Internally, CoMMON LISP mechanisms such as dynamically scoped vari­

ables, unwind-protect, and with-open-file make it possible to deal ef­

fectively with unwinds. A number of Pan macros use these mechanisms to

guard parts of Pan's internal state against unwinds; these include at present:

Cursor-Motion-Protect
Save-Cursor-Excursion
With-Buffer
With-Buffer-Scope
With-Class-Scope
With-Help-Stream
With-Mouse-Icon
With-Text-Protection-Suspended
With-Variable- Binding

Ordinary extension code should rely on these macros and should never use

the underlying mechanisms directly.

Unwinds in Other Situations

The user is often allowed to cancel a partially executed command, typically

via a "Cancel" button on popup prompters. This is implemented with a call

to Editor-Error, printing the message "Cancelled."

The command Abort is a shortcut for terminating commands legitimately

under program control. It is useful when the thread of control would be

greatly complicated by an explicit termination; it has much the same effect

as Editor-Error, but with neither message nor beep.

12

3.4 Detecting User Errors

Graceful recovery from user errors requires that explicit tests be made when­

ever an error is possible and that Editor-Error be called when one is detected.

Tests for user errors are distributed throughout the extension language. Pan

functions often rely on other commands and functions to detect various er­

rors.
A great number of commands at the extension level need no explicit tests

at all. This is an important aspect of the extension language, and it should

be maintained carefully. This section describes some of the error detection

mechanisms currently in place.

Prompting

Many tests for user errors are designed to ensure the well-formedness of user

data, typically supplied in response to prompters. Pan's command defini­

tion mechanism allows arguments to be declared specially, with. the result

that the user will be prompted automatically for the desired data when­

ever the command is invoked by the dispatcher. The prompting mechanism

guarantees well-formedness of any value it returns, unwinding with a call to

Editor-Error when it cannot return such a value.

Well-formedness is defined by an optionally specified "type" for each

argument (the default type is :string). Types supported at present include

:command
:form
:integer
:key-sequence
:pathname
:string
:symbol
:yes-or-no

Specification of a Pan command

A Lisp form
An integer
Specification of a key-stroke sequence

A file specification
Any text strings
A Lisp symbol
Boolean answer to a question

Additional prompt types can (and should) be added whenever we observe

that one or more commands routinely apply additional predicates to prompt

argument values; additional prompt types anticipated at present include Unfinished

:buffer,and :option-variable.

8 ln the current implementation, tabs may be '!ntered, but no other non-graphic

characters.

13

A number of additional options allow the prompting for each argument

to be customized as needed, for example with messages and displayed default

values.
When the implementation of a Pan command is too complex to use

this kind of declarative argument prompting, the prompting function for

each type (for example Prompt-For-String and Prompt-For-Pathname) may

be called explicitly. In every case the well-formedness of the return value is

guaranteed. Each prompting function has (or should have) documentation

that explains the criteria in effect for the type.

Protective Wrappers

Pan Macros can be written to provide safe environments for various kinds of

operations, further reducing the need for extension code to protect explicitly

against user errors.
The single example at present is Cursor-Motion-Protect, which ensures

the consistency of cursor-related data structures. Extension level code may,

within a call to Cursor-Motion-Protect, ignore buffer boundaries while moving

about. Any attempt to move illegally aborts with a low-level call to Editor­

Error; during the recovery Cursor-Motion-Protect (using unwind-protect)

restores crucial data structures.

Functions for Testing

Even when operations are known to be safe (for example Delete-Region sig­

nals an error if the buffer is protected), the semantics of a particular com­

mand may require an explicit test. The extension language includes many

variables and predicates that make this kind of information visible, for exam­

ple Text-Protected, Buffer-Empty?, Selection-Valid?, and EOB? (is the cursor

at end of buffer?).

Abstraction Layers and Responsibility

A difficulty with all these mechanisms is keeping them in balance, maintain- Problem

ing a clear division of responsibility for user error testing. We would like the

abstraction layers of the system to be arranged (and documented) so that

that during any command execution

• a test for every potential user error is made, but

• no test is performed redundantly.

14

Although existing code is improving as it gets rewritten, the problem is con­

founded by the many abstraction layers in some cases, the lack of internal

documentation in other cases, and the variety of user contexts that deter­

mine which correctness criteria are in effect. A short example drawn from

the current implementation (version 3.0) suggests the complexity.

The top level command for visiting a file, Visit-Named-File,

declares a prompt argument of type :pathname. When the user

invokes Visit-Name-File, Prompt-For-Pathname is called implic­

itly to collect an argument from the user. Prompt-For-Pathname

ensures that the argument is a well-formed file specification (re­

turned as a COMMON LISP pathname), and has a directory com­

ponent that exists. However, Visit-Named-File must additionally

test to ensure that the pathname (if it specifies an existing file at

all) does not specify a directory, since a directory is a legitimate

file in some contexts9 but cannot be visited like other files. 10

Visit-Named-File calls Visit-File, which first ensures that no

buffer already contains the specified file. Visiting the same file

in two Pan buffers is considered to be an error. 11 Visit-File does

not presume that the file exists, unless the user has requested

that it be visited "read-only" in which case it signals an error

should the file not exist. It does assume implicitly that the file

(if it exists) is not a directory.
In contrast, Insert-File uses the same prompt argument mech­

anism as Visit-Named-File, but insists that the specified file exist

and not be a directory, signaling an error otherwise.

Both Visit-File and Insert-File may call Create-Region-From­

File, which assumes that the specified file exists. Create-Region­

From-File in turn checks that the file is readable before calling

internal-create-region-from-file, which would fail if the

file were not readable. internal-make-region-from-file in

turn checks that the file has nonzero length before calling one

of the file reading functions written in "C", none of which are

intended to work on zero length files.

9 That this ambiguity is an artifact of UNIX file system semantics makes it no less a

problem.
10Directories actually can be visited with Pan's directory editor; Visit-File invokes the

directory editor when the specified directory turns out to be a directory.
11 This error is not always detectable, again because of UNI~ file system semantics.

15

The situation is actually considerably more complex, given the number

of different interactions possible with the file system, and the ongoing evo­

lution of the command set. Existing abstraction layers do not satisfy the

criteria precisely. They usually err on the side of conservatism at the cost

of redundant tests.

3.5 Protecting Pan Internals

The importance of handling user errors gracefully and informatively justifies

the use of considerable resources, both in implementation effort and in run­

time overhead. A suggested above, we would prefer to detect any potential

user error, describe the problem precisely, and reset reliably.

The same isn't true for potential misuse of the extension language by

extension-level code. We owe the extender (and implementor for that mat­

ter) a certain amount of safety and resilience, but not at too great an ex­

pense. Furthermore, it is impossible to protect against any potential error,

and it would be a waste of time to try. This section .discusses how we can

protect against these kinds of errors.

Permanent Tests for Internal Errors

When the user invokes one of Pan's commands, a certain amount of error

detection comes free. Commands (when executed by the dispatcher) use the

prompt module to guarantee well-formed arguments, and an error is signaled

when the user fails to supply them. It isn't always clear, however, how much Problem

argument checking to do in contexts where only programming errors could

be at fault, and how to respond when an error is detected.12

Sometimes the overhead of a permanent, explicit test is justified. This

might be the case when

• a particular function appears especially vulnerable to misuse,

• the potential for disaster is great, or

• the likely symptoms of an error would be misleading.

In some cases, a call to Editor-Error might be a sufficient response to an

internal error detected this way. This only makes sense, however, when the

12This applies also to commands when called internally as functions, since automatic

type checking is only applied to arguments supplied. by prompting the user.

16

problem can be diagnosed and explained adequately in the error message,

since the stack will not be available for examination afterward.

We have at present no conventional mechanism for permanent tests (as Unfinished

opposed to debugging assertions, see below) in situations where a call to

Editor-Error is not appropriate. Some error tests in the current implemen-

tation, which may fall in this category, now call Editor-Error. It is an open

question whether this category is necessary at all. If so, it should be carefully

articulated as a guideline; otherwise Editor-Error and debugging assertions

will presumably suffice.

Debugging Assertions in COMMON LISP

The most general mechanism for protecting Pan's internals against misuse

is Pan's debug-assert and its supporting machinery. This macro gen­

eralizes COMMON LISP assert with a single additional argument (a con­

trol variable), placed before the standard arguments. The operation of

debug-assert may be controlled in two ways.

• A Pan configuration switch13 determines whether debug-assert code

will be included in compiled Pan code.

• A control variable in each Pan module dynamically controls whether

assertions in the module (when they have been included at all) are

evaluated.14

Debugging assertions are typically included in debugging versions of Pan,

but not included in production versions. The default setting for all control

variables is t, so that when assertions are included, all debugging assertions

are evaluated. There should be, but isn't yet, a user interface15 for assertion Unfinished

control variables; it should be possible to inspect their values (a list in the

help buffer would suffice) and adjust them individually.

Debugging assertions also document important assumptions and invari­

ants; these are sometimes more concisely expressed as Lisp predictates than

as prose. The use of debug-assert is is not as prevalent as it should be, Unfinished

and there are probably still tests with calls to Editor-Error that should be

replaced by uses of debug-assert.

13Set make variable LISP.DEBUG tot in src/lib/make/def.allegroforms.make.
14 For example, •region-debug* controls assertion evaluation in the "region" module.
16User interfaces for debugging mechanisms are loaded ~ynamically when needed from

Pan library module "pan-debug."

17

Debugging Assertions in "C"

An entirely separate mechanism supports debugging assertions in Pan's "C"

modules. These are coded as explicit tests for erroneous conditions and calls

to printError16 when one is detected. printError is a simple wrapper for

fprintf, directing the message to the stream stderr.

Most debugging assertions are simple range checks on arguments, since

Pan's "C" modules retain very little state between calls.

The operation of these debugging assertions is controlled by conditional

compilation. A configuration switch 17 determines whether assertion check­

ing code will be included in compiled "C" modules. There is no mechanism

for controlling assertion checking dynamically.

3.6 Catching Lisp Errors Globally

A Lisp error originates from the underlying COMMON LISP, when an error

is "signaled" in the nomenclature of the language definition [8]. These are

often the result of bugs in Pan code, but there are also certain user errors

that can only be detected by the Lisp errors they produce, for example

attempting to execute a Lisp form with mismatched parentheses.

Trapping Lisp Errors

An early FRANZ LISP implementation of Pan was able to bind custom error

handling functions to two different error traps. These error handlers had

access to information about the nature of the error, from which they could

diagnose the problem and choose how to respond [6]. One possible response

was just a call to Editor-Error, and tests for some user errors presumably

relied on this mechanism.
The Allegro implementation of CoMMON LISP is far less fl.exible. 18 The Problem

only tool for trapping Lisp errors is excl: errorset. Unfortunately, this

trap catches every kind of Lisp error and provides no information in the

program about the nature of the error. 19 This is much too coarse-grained

to serve as a global error handler.

Thus, a Lisp error in the current implementation suspends Pan and

drops the user into a break loop. This should not be allowed to happen

u1printEr:ror is linked from the Pan "C" library edebug.

'
7 lnclude string "-DDEBUG" in the definition of make variable OPTS in srcjpan/Makefile.

18We believe that future releases of Allegro COMMON LISP will be better in this respect.
19 An optional argument requests that informative messages be printed to the console.

18

in any situation where a Lisp error is anticipated or expected; anticipated

errors should be detected by local uses of axel: e+rorset (see below).

When an unanticipated Lisp error does occur, the user can usually reset

the Pan dispatcher from a break loop by typing :resume, which translates

into a call to Editor-Error.

CoMMON LISP Error Detection

The Allegro implementation of CoMMON LISP supports a certain amount

of internal rund-time checking20 in compiled code. A Pan configuration

switch21 requests (using COMMON LISP proclaim) maximal error detection

at run time.

Foreign-Function Error Detection

Allegro's "foreign-function interface" supports type checking on calls to "C"

functions.22 A Pan configuration switch23 requests run-time argument type

checking on foreign function calls; this must be specified at the time "C"

object modules are loaded into COMMON LISP, and it cannot be controlled

dynamically.

3. 7 Trapping Anticipated Lisp Errors

Allegro's axel: errors at is the only way for Pan to trap Lisp errors, but it

provides no diagnostics beyond success or failure. Thus, it is only effective in

narrow contexts where diagnosis is relatively simple, usually the execution

of a single COMMON LISP function. In ordinary cases, a call to Editor-Error

is the appropriate response to an error detected this way.

When the diagnosis isn't obvious from the static context of the call,

axel: errorset can be instructed (by an optional argument) to print di­

agnostic messages on the console. We would rather trap the the error and

announce the message using Pan facilities, but we cannot do so straightfor­

wardly in the current Allegro implementation. During run-time file loading,

for example, Pan responds to any Lisp error by announcing "Error during

loading," and the user must examine the console for details.

We might experiment with redirection of the stream to which this kind Unfinished

20 It isn't clear how much.
21 Set make variable OP1_COMPILE to nil in src/lib/make/def.allegroforms.make.
22 Unfortunately, Allegro neglects to type check return values.
23Set make variable OPT...I.OAD to nil in src/lib/make/def.allegroforms.make

19

of information is written by the CoMMON LISP implementation. It may be

possible to capture it and place it in a special log maintained inside Pan, a

log whose visibility would be more easily managed than the console.

3.8 Tracing

Tracing is a valuable aid to debugging. Pan supports several kinds of tracing,

but they have not been well integrated and they lack a uniform user interface.

Allegro Function Tracing

The Allegro implementation of CoMMON LISP provides a mechanism for Unfinished

selectively tracing function calls and returns. We haven't built a convenient

user interface for this mechanism, but one could be added.24

The default behavior of Allegro function tracing is somewhat limited

by the fact that many internal objects in Pan, used as argument and re-

turn values, are not intelligibly printed by the default scheme. This can Unfinished

be improved somewhat by adding custom printers to Pan's internal data

structures,25 but we have done so for only a few data structures.

Allegro Function Advising

The Allegro implementation of COMMON LISP provides a mechanism for Unfinished

attaching before- and after-daemons to selected functions. We have used

this mechanism very little and not at all in support of error management

and debugging. For debugging, this eould represent a useful compromise

between simple function tracing (above), since it offers more flexibility, and

custom tracing (below), since they can be added dynamically to running

code. We haven't built a convenient user interface for this mechanism, but

one could be added.

Custom Tracing in COMMON LISP

Sometimes, built-in COMMON LISP function tracing is inadequate; it may

print too much, too little, or at an inappropriate level of abstraction. Pan's

"debug-trace" module is a customized tracing facility that allows special

tracing code to be added where appropriate.

Like debugging assertions, custom tracing can be controlled in two ways.

u Any interface like this would reside in the "pan-debug" library module.
2~The COMMON LISP de:fstruct takes a :print-:func:tion argument.

20

• A Pan configuration switch26 determines whether custom tracing code

will be included in compiled Pan code.

• A name for each programmer-defined "trace" allows the programmer

to control dynamically whether the specified trace (when it has been

included) is performed.

Pan's "debug-trace" module is at present very little used.

Custom Tracing in "C"

An entirely separate mechanism supports tracing in Pan's "C" modules.

These are coded as explicit calls to printTrace (for strings) and putTrace

(for characters). 27 These are simple wrappers for fprintf and putc respec­

tively, directing output to the stream stderr.

Nearly every function exported from Pan's "C" modules 28 contains trac­

ing statements. Most trace-statements print the name of the "C" function on

entry and as many of the arguments as can be printed meaningfully. When

there is a return value, a separate trace statement prints this too. In the few

cases where a "C" module retains interesting state, trace statements may

print additional information, for example whether a call to sw-cursor-set

"hits" the cached location of the displayed cursor.

Custom tracing in "C" modules is controlled in two ways.

• A Pan configuration switch29 determines whether tracing code will be

included in compiled "C" modules.

• A static variable in each "C" module dynamically controls tracing in

the module (when it has been included). A special function in each

"C" module allows t.his variable to be set. 30

The "pan-debug" module in Pan's run-time library contains a user in­

terface to "C" tracing. When loaded, "pan-debug" adds special menus that

allow tracing to be set, module-by-module or all at once.

Unfinished

It isn't possible at present to redirect output from "C" module tracing, Unfinished

26Set make variable USP..DEBUG tot in src/lib/make/def.allegroforms.make.
27 printTrace and putTrace are linked from Pan "C" library cdebug.
28There are currently around 100 exported "C" functions.
29Include string "-DTR.ACE" in the definition of make variable OPTS in src/pan/Makefile.
3°For example, tracing in the "C" frame module is controlled by the "C" function

svFrameSetTrace, exported into COMMON LISP as sv-set-frame-trace.

21

but it should be. In particular, it should be integrated with both kinds of

tracing in COMMON LISP so that all tracing output appears in the same

stream.

3.9 Statistics

Another valuable aid to debugging, somewhat related to tracing, is the gen­

eral ability to gather statistics about the frequency with which various in­

ternal events occur.

Allegro Statistics

Allegro CoMMON LISP provides a profiling mechanism that can count and

and report the number of times specified functions are called. This can be

useful for discovering which parts of the system are being most heavily, but

is relatively inflexible. See the Allegro User Guide for details on how to use

it.

Custom Statistics in COMMON LISP

Pan's "statistics" module allows more detailed statistics gathering code to

be added where appropriate. The facility supports simple counters, ratios,

percentages, sums, differences, and histograms.

Like debugging assertions and custom tracing, statistics gathering can

be controlled in two ways.

• A Pan configuration switch31 determines whether custom statistics

gathering code will be included in compiled Pan code.

• A name for each programmer-defined "statistic" allows the program­

mer to control dynamically whether the specified statistic (when it has

been included) is gathered.

The Pan option Print-Stats-On-Termination, when set tot, requests that all

defined statistics be printed by Pan when the user exits.

Pan's "statistics" module is at present used very little outside of the Unfinished

semantic analysis (Colander) modules.

31 Set make variable LISP ..DEBUG tot in src/lib/make/de£allegroforms.make.

22

4 Guidelines for Extension Programming

This section describes Pan tools and conventions for error management in

extension level code. A premise of Pan's extension language is that relatively

little explicit attention to error management should be necessary if you follow

a few basic guidelines.
This discussion presumes knowledge of basic definitional mechanisms. in

Pan's extension language, including

Debugging Version

Define-Char-Class
Define-Command
Define-Constant
Define-Flag-Variable
Define-Function
Define-Hook
Define-Hook-Function

Define-Macro
Define-Option-Variable
Define-Variable

Use a debugging version of Pan for developing and testing new commands.

This provides much better internal error checking, and it enables Pan's

custom tracing and statistics gathering facilities.

Responding to User Errors

You must write your code to detect any situation where a course of action

requested by the user is nonsensical or would be dangerous to the internal

workings of Pan. When this happens, your code must enforce Pan's policy

for responding to user errors. This policy is to

1. Abort the currently executing command.

2. Restore buffer contents to a safe state so that the user loses no work.

3. Beep or flash to alert the user.

4. Announce the nature of the error in terms the user can understand.

5. Reset the command dispatcher to await the next command.

23

• I

When writing extension code, you are obliged only to detect and diagnose

user errors; a call to Editor-Error does the rest. For example, Pan's text

cursor must not move past the end of a text buffer (EOB).

(Define-Command Next-Character()
"Move cursor forward."
(when (EOB?)

(Editor-Error "Cursor at EOB"))
. . .)

A call to Editor-Error does not return; instead, it aborts the command that

is currently executing and unwinds all procedure calls on the stack back to

the dispatcher. The dispatcher resets, and awaits the next user action. The

first argument to Editor-Error is a COMMON LISP format string. Editor-Error

applies format to the string and any remaining arguments, and announces

the result in the panel of the active viewer, along with a beep.

Designing error messages is an art; it demands careful thought and good

judgement. Messages must be terse, so they will fit into a Pan viewer's

one-line annunciator, but they must help the user identify precisely the

offending action. They must point out that a mistake has been made, but

they must not appear surly or insulting. They must accomplish all this

using terminology that the user will understand, not the terminology of

the implementation. They should the object of continuing refinement, since

almost nobody gets them right a priori.

In most cases you can avoid the problem altogether by exploiting error

management facilities already present in Pan's extension language. Some of

the guidelines below suggest how.

Prompt Arguments

A Pan command, when invoked, may ask the user to specify one or more

arguments. Error detection in the presence of user input is crucial but

tiresome. Pan's "prompt" module can do most of it for you, and you can

specify most of it declaratively.

For example, the command Insert-File asks (declaratively, in the lambda

list) the user to enter text that specifies a file, and then, if valid, converts

the textual specification into a COMMON LISP pathname value.

(Define-Command Insert-File
((file :prompt :pathname "Insert file:"))

. . .)

24

The keyword : pathname is a "type" specification to the prompt module.

It requests that user input be subject to well-formedness criteria appropriate

to the type, and that an appropriate CoMMON LISP value be returned. If

the user input is unsuitable, the prompt module calls Editor-Error with a

diagnosis of the problem. Thus, the prompt module guarantees that the

argument file in Insert-File is a well-formed pathname.

The prompt module supports the following types; more will be added.

:command
:form
:integer
:key-sequence
:path name
:string
:symbol

:yes-or-no

Specification of a Pan command

A Lisp form
An integer
Specification of a key-stroke sequence

A file specification
Any text string32

A Lisp symbol
Boolean answer to a question

Note, however, that this particular kind of type-checking (supported by

the "prompt" module) is not in effect when you call Insert-File as a function

from other code. In this case your code must guarantee the validity of any

argument you supply; commands like Insert-File are counting on it.

Error Detection in Primitives

Many functions in Pan's extension language protect against fundamental

user errors. IT you are willing to have your extension command terminated

abruptly when such an error is detected (as usual, via calls to Editor-Error),

then you can just use these functions assuming the best.

For example, any function that changes the contents of a buffer's text

representation must ultimately use one (or both) of Insert-Region or Delete­

Region. These two call Editor-Error immediately when a buffer's text has

been "protected." No other functions need to make this test.

Having a command terminated abruptly is a bad idea if it would leave

behind unpleasant side-effects. This generally doesn't happen in extension

code, as long as you use protective wrappers in the right places (see below)

and you don't open files explicitly. IT you can't make your command inher­

ently immune to unwinds, then you must make explicit tests (checking the

local value of option variable Text-Protected in the buffer for example).

32In the current implementation, tabs may be entered, but no other non-graphic

characters.

25

Protective Wrappers

Certain Pan operations are inherently complex and full of delicate side­

effects. An unwind from the middle of a cursor movement, for example,

could leave any number of internal data structures (and the screen display)

in disastrous disagreement. Several Pan macros guard specifically against

this kind of damage; only a few are important at the extension level.

Whenever you intend to move the cursor about, do so within the scope

of Cursor-Motion-Protect. This guarantees the integrity of cursor, text, and

screen data, even in the presence of calls to Editor-Error (or other unwinds).

(Define-Command Next-Character()
11 Move cursor forvard. 11

(Cursor-Motion-Protect
<go ahead and try it>

. . .))

When you expect a command to run long enough that the user might

notice the delay, changing the appearance of the mouse cursor is a helpful

courtesy. However, you must eventually change the cursor back to what it

was before, even if a call to Editor-Error unwinds. The macro With-Mouse­

Icon changes the cursor and guarantees that it will be restored in any case.

(Define-Command Grind()
(With-Mouse-Icon :think 11 Starting to grind ... 11 11 done 11

...))

Text protection (controlled by the option variable Text-Protected) disal­

lows any changes to the contents of a buffer's text representation. When you

want to modify a buffer in spite of possible text protection, do so within a

call to macro With-Text-Protection-Suspended. This guarantees that buffer

protection will be restored to its former state (on or off), even if a call to

Editor-Error unwinds.

(Define-Command Flush-Buffer()

(With-Text-Protection-Suspended
(Delete-Region (Make-Buffer-Region))))

Macro With-Variable-Binding operates analogously for general Pan vari­

ables. Use it to change the value of a variable for the duration of an opera­

tion; the prior value is guaranteed to be restored upon completion.

(Define-Command Poke-Around()
(With-Variable-Binding (Load-Verbose nil)

. . .))

26

More Help

These guidelines are necessarily vague in places and are subject to change.

Here are some other ways to use these facilities productively.

• Review existing code in the user level editing code of Pan. Files named

with the suffix -cmds usually contain extension level code.

• Use Pan's internal documentation features, available through the help

system.

• Show your code to one of Pan's implementors and ask for suggestions

on error management.

5 Guidelines for Internal Programming

Guidelines for internal programming begin with those for extension level

programming, described in the previous section. Those guidelines are also

in effect for internal programming and will not be repeated here. This

section concentrates on internal issues that are intentionally hidden from

the extension programmer.

5.1 User Errors

The best method for handling user errors is to design the system and user­

interface carefully enough that they cannot occur; this approach was men­

tioned, along with some examples, earlier in the paper. The remainder of

this section describes how to handle user errors that do not submit to this

optimal solution.
It is a Pan policy that all user errors be detected and handled appro­

priately. Editor-Error implements most of the mechanisms for response; the

difficult part is detection and diagnosis.

Distinguishing between user errors and internal errors can be difficult at

times; furthermore, the criteria sometimes change as the system evolves.

Implicit Tests

Use special prompt arguments for commands when possible. This greatly

simplifies validation of user input.
Avoid an explicit test when you can rely on low-level error detection

mechanisms (for example, built-in guards against illegal cursor movement

27

and text protection). Just assume the best (but be aware of potential stack

unwinding). Your code will be more readable, and redundant tests will be

minimized.
When you call a higher-level function, consult the documentation (and

code) to determine what user errors, if any, are detected. Add explicit tests

only for user errors not detected by functions you call. On the other hand,

if a function tests for an error that cannot possibly occur in your context,

reconsider your choice of function. Perhaps there is a lower level function

that will not perform the test, but which relies on its clients to prevent the

error. If there is no such lower level function, consider restructuring that

part of the system so there is one. Examples of these layers may be found

among file-handling commands and functions.

Explicit Tests

Simplify control structures by exploiting the fact that a call to Editor-Error

does not return. Good style has the error tests, when possible, inserted into

the thread of control, rather than being part of it. In practice this means

that calls to Editor-Error should appear most often in vhen and unless forms

and seldom in if, cond, and case forms.

(Define-Function Whiz-Bang (object direction)

(vhen (bogusp object)
(Editor-Error "Can't vhiz a ·su object))

(unless direction
(Editor-Error "Can't vhiz vithout direction"))

...)

Internal Documentation

Pan's elaborate internal help system makes information available at run

time; it can be configured to present just information most useful to users

or all information that might be relevant to implementors too.

Among other features, each Pan object may have a documentation string

associated with it. This is analogous to the documentation strings for CoM­

MON LISP objects, but with a powerful user interface for browsing the in­

formation.
Use this feature for every Pan object you create. For functions and

commands, add to the ordinary specification (arguments, :..eturn values, side

effects) additional information about boundary conditions. Under which

28

conditions will the function "signal an error" (understood to mean a call to

Editor-Error)? What preconditions are simply assumed?

User-Lisp Errors

Certain kinds of user errors can be detected only by evaluating a COMMON

LISP form and awaiting a Lisp error. Allegro offers only one mechanism for

trapping Lisp errors, excl: errorset.

Unfortunately, excl: errorset reports only success or failure (and a

return value if any); in case of failure no diagnostic information is available.

Use excl: errorset only in narrow contexts where a specific kind of user

error can be anticipated, and where diagnosis is guaranteed by context. A

typical context for excl: errorset is execution of a single COMMON LISP

form that involves the file system or user input (see examples below).

When excl: errorset's optional second argument is t, it prints to the

console a description of any error trapped (information not available to

the caller). Use this option only when the information would add to the

diagnosis implied by the context. For example, it wouldn't help in a context

where a failure always implies a missing file, but it would help when loading

Lisp code, since the additional information can help the user locate the

problem.
Allegro's excl: errorset returns multiple values: a boolean indicating

success or failure and the resulting value (if successful). How to handle these

depends on the circumstances. Sometimes you just want to protect against

irrelevant break loops, as when deleting a scratch file, and you care about

neither value.

(when (probe-file (scratch-file))

(excl:errorset (delete-file (scratch-file))))

Other times, you may want to treat the return value separately from success

or failure, as when loading a file of Lisp code; this example takes three

separate actions, corresponding to three possible outcomes of the call to

load: it returns t, it returns nil, or it signals an error.

(unless (excl:errorset
(if (load file :if-does-not-exist nil)

(Announce "-A loaded" filename)

(Editor-Error "-A not found" filename))

t)

(Editor-Error "Error during load of -A" filename))

29

And sometimes, you want to use both values together, as when expanding

a UNIX file specification; in this example the multiple-value-bind form

returns either the result, when it succeeds, or nil if it signals an error.

(cond
((multiple-value-bind (success? result)

(excl:errorset (excl::tilde-expand-unix-namestring name))

(and success? result))

(t (Editor-Error "Unknovn user in -s." name))))

Ideally Lisp would pass control to a Pan error handler in case of any Lisp

error not already wrapped by axel: errorset. Unfortunately, Allegro does

not make this possible (and axel: errors at provides too little information

to be useful). So, in case of Lisp errors not wrapped by axel :errorset,

Pan gets suspended and enters a break loop. If the guidelines here are

followed, however, this should never happen in response to a user error,

only in response to internal Pan bugs.

5.2 Protect Against Unwinds

Unwinds can strike at any time. A call to a Pan function might, instead of

returning, unwind the stack directly back to the dispatcher with a throw.

Take great care that your code leaves behind no unpleasant side-effects when

this happens; there are several basic techniques for doing so.

• Use dynamic binding for special variables that establish important

context (instead of setf).

• Use COMMON LISP unwind-protect.

• Use with-open-file instead of open to read files.

Avoid indiscriminate use of these techniques. Instead incorporate them in

Pan primitives whose main job is to control context and side-effects.

For example, the special variables *buffer* and •class* establish the

context for many of Pan's functions. When setting bindings in new classes

you can use the macro With-Class-Scope to change this context temporarily.

(Define-Macro With-Class-Scope (class tbody body)

'(let ((•class* ,class))

.~body))

30

If you must temporarily modify a non-special variable, protect it with

unwind-protect. For example, With-Variable-Binding works this way for

Pan variables. A simpler example would be the preservation of an explicit

global stack.

(push-my-stack value)

(unwind-protect
(progn

...)
(pop-my-stack))

5.3 Assertions

Assertions differ from tests for user errors in two ways. First, they guard

against failures that the user should not be able to provoke. Second, they

must make available much more information, since diagnosis must be man­

ual.

Assertions in COMMON LISP

Whenever an internai Pan function appears particularly vulnerable to failure

through misuse (especially when such a failure would be difficult to diagnose)

add a Pan debugging assertion.

(debug-assert •module-debug*
(zerop foo)
()

;control var.
;test form
;list of places

"Value of foo is ·o, not 0" ;message

foo) ;message args

The :first argument is a variable that controls assertion checking dynamically.

There should be one control variable per module; for example the control

variable in the "region" module is •region-debug•. There should be, but Unfinished

isn't yet, a convenient user interface for examining and setting the values of

these variables. All control variables have default value t at present, so all

assertion checking is routinely performed in debugging versions of Pan.

debug-assert passes its remaining arguments to COMMON LISP assert.

The assertion in the example ensures that variable foo has value 0; when

the assertion fails (namely, when the value of foo is not 0), assert prints

the specified message using format and enters a break loop.

31

Note that the call to debug-assert is removed from compiled code in

production versions of P(ln. To activate assertion checking in a production

version, reload the module to run interpretively and push the symbol :debug

onto the CoMMON LISP list •features•.

Assertions in "C"

Debugging assertions in Pan's "C" modules are handled in much the same

spirit, but with a different implementation.

• Control conditional compilation with the "C" DEBUG switch, set in the

appropriate makefiles.

• Write explicit error tests. Announce failures with a call to print Error,

a wrapper to fprintf (with output to stderr).

• Return a special error value to the Lisp code that called the function.

int
swPanelSetFlag(dsply, flag, value)

int dsply;.
int flag;
int value;

{

#ifdef DEBUG
if (flag< 0 II flag>= NFLAGS) {

printError("swPanelSetFlag: flagY.d out of range",

flag);
return(FALSE);

}

#endif DEBUG

}

Add assertions to every "C" function that is exported into Lisp. Assume

that arguments from Lisp are correct in the ordinary case, but use assertions

to check arguments for rationality whenever there is enough local state in

"C" to do so.
There is no mechanism to control assertion checking in "C" dynamically.

One could be added, but it does not seem necessary.

32

5.4 Tracing

CoMMON LISP Function Tracing

When it will suffice, COMMON LISP function tracing is the most conve­

nient form of tracing available. Control function tracing dynamically, on a

function-by-function basis, using trace and untrace

(trace Insert-Region Delete-Region)

See documentation on the Allegro implementation of CoMMON LISP for

more details on use of trace and untrace.

COMMON LISP function tracing is confounded by the presence of Pan's

complex, large (and sometimes circular) objects being passed as arguments

and return values; default methods for printing these objects are at best

hard to read, and can sometimes cause Lisp errors themselves. Correct

this shortcoming by supplying useful printing functions for important data

structures.

(defstruct (tnode ...
(:print-function print-tnode))

parent
children

)

(defun print-tnode (tnode stream level)

(format stream" ... " ...))

Allegro Function Advising

When simple tracing is inadequate, but you want to operate dynamically in

an existing image without adding custom tracing code (see below), you can

use the Allegro advise mechanism. This allows you to dynamically attach

procedures to be run as before- or after-daemons on any function you specify.

See the Allegro Users Manual for more details.

Custom Tracing in COMMON LISP

Add custom tracing code in situations where COMMON LISP function tracing

does not suffice:

• when argument values do not print intelligibly in the default manner;

33

• when higher-level information would be much more useful than argu­

ment listings; and

• when a particular kind of trace must be implemented in several loca­

tions, not tied to a specific function.

Pan's "debug-trace" module supports a general form of tracing. To use

it, begin by creating a new "trace" by name.

(def-debug-trace watch-widgets

:documentation "Trace operations on widgets")

Insert trace statements at the appropriate places, as many as needed for the

particular trace.

(debug-trace watch-widgets
"Widget -A gets created."

...)

(debug-trace watch-widgets
"Widget -A enlarged by -o."
...)

You can control the trace dynamically with calls to debug-trace-on and

de bug-trace-off.

(debug-trace-on watch-widgets)

See the "debug-trace" module in src/lib/allegro/debug-trace.cl for more

details.

Custom Tracing in "C"

Tracing in Pan's "C" modules is handled specially for several reasons.

• Although it is possible to use COMMON LISP tracing on functions

bound to "C" functions, argument passing across the foreign-function

interface is sufficiently problematic that it is helpful to know what

arguments a "C" function actually receives.

• Some arguments to C functions (e.g. textnode pointers) do not submit

gracefully to printing.

34

• Additional custom tracing, beyond reporting argument variables, can

be most helpful.

Every "C" function should include at least simple argument tracing.

int
swPanelSetFlag(dsply, flag, value)

int dsply;
int flag;
int value;

{

#ifdef TRACE
if (panelTrace) printTrace("swPanelSetFlag'l.d,Y,d,'l.d\n)",

(dsply, flag, value);

#endif TRACE

}

When tracing code reports arguments (the most common usage at present)

position the trace statement before any debugging assertions. When a "C"

function returns an important (and printable) value, add an additional trace

just before the return that reports this value. Add additional traces for

monitoring important retained state in "C" modules, for example whether

a call that sets the screen cursor location "hits" the cached value.

Every "C" module ("panel" for example) includes a static variable (in

this case panel Trace) that controls tracing dynamically. Default value for

these values is FALSE, but they may be adjusted with calls to "C" functions

(for example swPanelSetTrace) imported into Lisp (where it is known as

sw-set-panel-trace). Pan library module "pan-debug" will, when loaded,

add a menu for changing "C" tracing variables.

5.5 Statistics

In some situations you may want to observe aggregate rather than specific

behavior in your code. In these cases statistics are more suitable than .trac­

ing.

Custom Statistics in COMMON LISP

Pan's "statistics" module supports a general·form of statistics gathering.

Create a new "statistic" by name before starting what you want to observe.

35

The statistic may be a simple "counter," a "ratio" or "percentage" (based

on counters), a "sum" or "difference" (of two counters), or a "histogram."

(def-statistics-counter calls-to-window-update

"Number of calls to window update")

(def-statistics-counter update-cache-miss

"Number of cache misses in window update")

(def-statistics-ratio update-cache-miss calls-to-window-update

"Ratio of window update cache misses to calls.")

Then, at the appropriate places, increment counters. The default increment

is 1, but you can specify another increment with an optional argument.

(statistic calls-to-window-update)

Finally, when you wish to see a summary of current values for statistics, call

print-statistics. You may also set Pan option Print-S tats-On-Termination

to t, which requests a summary when you exit Pan.

6 Acknowledgements

Pan, including all policies and mechanisms described here, was desigiled and

implemented by Robert A. Ballance, Jacob Butcher, and Michael L. Van De

.Vanter with guidance from Susan L. Graham. Christina Black made many

helpful suggestions concerning this document and the issues it raises.

7 References

1. BALLANCE, R. A. Syntactic and Semantic Checking in Language-Based

Editing Systems. PhD Dissertation, Computer Science Division, EECS,

University of California, Berkeley, 89/548, December 1989.·

2. BALLANCE, R. A. AND VAN DE VANTER, M. L. Pan I: An Introduction

for Users. Computer Science Division, EECS, University of California,

Berkeley, 88/410, September 1987.

36

3. BALLANCE, R. A., VAN DE VANTER, M. L. AND GRAHAM, S. L. The

Architecture of Pan I. Computer Science Division, EECS, University of

California, Berkeley, 88/409, August 1987.

4. BUTCHER, J. LADLE. Computer Science Division, EECS, University of

California, Berkeley, 89/519, November 1989, Master's Thesis.

5. HILTZ, S. R, AND KERR, E. B. Learning Modes and Subsequent Use of

Computer Mediated Communication Systems. Proceedings SIGCHI Con­

ference on Human Factors in Computing Systems, Boston, MA (April

1986).

6. LANE, D. J. Porting Pan I to Allegro Common Lisp. Computer Science

Division, EECS, University of California, Berkeley, 88/453, September

1988.

7. LEWIS, C. AND NORMAN, D. A. Designing for Error. In User Centered

System Design: New Perspectives on Human-Computer Interaction, D. A.

Norman and S. W. Draper, Eds. Lawrence Erlbaum Associates, Hillsdale,

NJ, 1986, 411-432.

8. STEELE, JR., G. L. Common Lisp: Th.e Language. Digital Press, 1984.

37

